This week for ‘#TidyTuesday’ used bee colony data collected by USDA at the state level for the US. Check it out here
I decided to look at the average percent of colony decline in each state, for the last four years. The subsequent code below shows the details of how this was done.

library(tidytuesdayR)
library(tidyverse)
library(maps)
library(viridis)
library(ggplot2)
tuesdata <- tidytuesdayR::tt_load('2022-01-11')
colony <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-01-11/colony.csv')
stressor <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-01-11/stressor.csv')
states_map <- map_data("state")
col_mean <- colony %>%
mutate(state = tolower(state))%>%
filter(year > 2017)%>%
group_by(state, year)%>%
summarise(col_loss=mean(na.omit(colony_lost_pct)))
col_mean %>%
ggplot(aes(map_id= state)) +
geom_map(aes(fill=col_loss), map = states_map)+
expand_limits(x= states_map$long, y=states_map$lat)+
coord_map("polyconic") +
scale_fill_viridis(option = "magma", direction = -1) +
theme_void()+
facet_wrap(vars(year))+
labs(fill = "Percentage of Colony Lost", title= "Average Percent Bee Colony Lost Per Year")+
theme(legend.position="bottom", plot.title = element_text(hjust =0.5))